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Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus 
and remains a leading cause of preventable blindness globally, particularly 
among the working-age population. The World Health Organization (WHO) 
has projected that by 2030, the prevalence of diabetes will exceed 578 million, 
escalating the burden of DR and vision impairment worldwide. Early detection 
of DR is critical as it allows timely intervention, thus preserving vision and 
improving patient outcomes (Vidal-Alaball et al., 2019).

Traditional DR screening relies on manual interpretation of retinal images 
by ophthalmologists, which can be resource-intensive, especially in low- and 
middle-income countries with limited access to specialists. These limitations 
have prompted a growing interest in the application of artificial intelligence 
(AI), particularly deep learning (DL) and machine learning (ML) algorithms, 
to automate and scale screening efforts (Rajalakshmi et al., 2018). These AI 
systems offer the potential to reduce screening bottlenecks and standardize 
diagnosis, particularly in underserved regions.

The integration of AI in DR screening has already demonstrated promising 
results, with several models achieving diagnostic performance comparable 
to expert ophthalmologists. Explainable AI (XAI) and convolutional neural 
networks (CNNs) have further improved the transparency and interpretability 
of these systems, which are critical for their clinical adoption (Mishra et al., 
2022).

In addition to accuracy, scalability and deployment readiness are pivotal in 
assessing the real-world utility of AI systems. A growing body of evidence 
shows that integrating AI-based screening in primary healthcare settings 
leads to earlier referrals and improved patient follow-up (Deepa & Sivasamy, 
2023). This aligns with the broader shift toward preventive care and the use of 
technology to reduce the economic burden of diabetic complications.

Despite these advances, challenges remain in the generalizability and validation 
of AI tools across diverse populations. Retinal image quality, variations in 
fundus pigmentation, and differences in disease presentation necessitate 
careful calibration of AI algorithms (Grzybowski et al., 2020). Additionally, 
ethical considerations such as algorithmic bias, data privacy, and accountability 
in clinical decisions remain active areas of concern and research.

Furthermore, the adoption of AI-based screening must be accompanied 
by appropriate health system infrastructure, including teleophthalmology 
platforms, electronic health records, and trained personnel for follow-up care. 
The WHO recommends an integrated approach, combining digital innovations 

with robust public health strategies to maximize impact (Gunasekeran et al., 
2020).

Given the growing corpus of literature and technological maturity, a systematic 
review is warranted to critically examine the evidence supporting AI’s role in 
early DR detection. This review synthesizes findings from diverse study designs, 
AI architectures, and healthcare contexts to assess clinical utility, accuracy, and 
implementation feasibility (Alavee et al., 2024).

In summary, the convergence of AI and ophthalmology has created a pivotal 
moment in the management of diabetic complications. As AI continues to 
evolve and demonstrate diagnostic reliability, its strategic deployment in 
screening programs could redefine the future of diabetic retinopathy care 
(Grauslund, 2022).

Methodology

Study Design

This review employed a systematic review methodology, following the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
2020 guidelines to ensure rigorous, transparent, and reproducible reporting. 
The primary aim was to synthesize peer-reviewed empirical evidence 
evaluating the application of artificial intelligence (AI) in the early detection 
of diabetic retinopathy (DR). The scope encompassed studies involving AI-
driven diagnostic tools or models applied to retinal imaging datasets, with an 
emphasis on early-stage or referable DR detection in diabetic individuals.

Eligibility Criteria

Studies were included based on the following inclusion parameters:

•	 Population: Human subjects (≥18 years) with a diagnosis of diabetes 
mellitus, who underwent retinal screening for diabetic retinopathy.

•	 Interventions/Exposures: Use of artificial intelligence systems, 
including but not limited to machine learning (ML), deep learning (DL), 
convolutional neural networks (CNNs), and other automated diagnostic 
frameworks, specifically aimed at detecting early-stage diabetic retinopathy.

•	 Comparators: Ground truth annotations by certified 
ophthalmologists, conventional diagnostic methods, or other AI systems 
where applicable.

Manuscrito recibido: 12/08/2025
Manuscrito aceptado: 27/10/2025

*Corresponding Author: Moamen Abdelfadil Ismail, 
1Consultant, King Abdulaziz specialist hospital-Sakaka-
Aljouf

Correo-e: Amanialali1888@gmail.com 

EARLY DETECTION OF DIABETIC RETINOPATHY USING ARTIFICIAL INTELLIGENCE: IMPACT ON PHYSICAL 
PERFORMANCE AND PSYCHOSOCIAL OUTCOMES

Moamen Abdelfadil Ismail*1, Warif Nasser Alghofaily2, Najla Abdelhadi Abdalla3, Ghazi Awad A Al 
Qahtani4, Talal Abdulmalek Almalki5, Amani Abdulmanam Alali6, Abdullah Eid A Alsobaie7, Asayil 

Ahmed Alrasheed8, Omama Abubaker Alamin9, Batool Mohammed alhashidi10, Taha Isam Khayat11

1Consultant, King Abdulaziz specialist hospital-Sakaka-Aljouf, 2MBBS, Tabuk university, 3Senior 
registrar ophthalmology, 4Medical intern, 5Medical student, King Abdulaziz University- Rabigh, 66th year 
medical student Tabuk university, 7Medical intern, 8College of Medicine, King Faisal University, Alhasa, 

Saudi Arabia, 9Ophthalmology senior registrar, 104th year medical student,11Medical intern

Abstract

Background: Diabetic retinopathy (DR) remains a leading cause of preventable vision impairment globally. 
Traditional screening programs are resource-intensive and underutilized, especially in low- and middle-income 
regions. The integration of artificial intelligence (AI) into ophthalmology presents a promising solution to 
enhance early detection and diagnosis of DR.

Objectives: To systematically review the existing literature evaluating the diagnostic performance, feasibility, 
and implementation of AI-based models for early detection of diabetic retinopathy.

Methods: A systematic search was conducted across PubMed, Scopus, Web of Science, Embase, and IEEE Xplore 
for peer-reviewed studies published between 2010 and May 2024. Eligibility criteria included adult diabetic 
populations screened using AI tools, with outcomes reported in terms of sensitivity, specificity, or AUC.

Results: Fifteen studies met the inclusion criteria. CNN-based models demonstrated high diagnostic accuracy, 
with sensitivity ranging from 87.2% to 94.1% and specificity between 90.7% and 98.5%. Explainable AI (XAI) 
improved clinician trust. Limitations included variability in datasets and lack of longitudinal clinical impact 
assessment.

Conclusion: AI, especially deep learning models, shows strong potential to enhance DR screening. However, 
ethical implementation, population-specific validation, and longitudinal effectiveness remain areas requiring 
further research.
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•	 Outcomes: Diagnostic performance metrics including sensitivity, 
specificity, accuracy, AUC (Area Under the Receiver Operating Characteristic 
Curve), or predictive value in identifying early or referable DR.

•	 Study Designs: Randomized controlled trials (RCTs), prospective 
and retrospective cohort studies, cross-sectional studies, and diagnostic 
accuracy studies.

•	 Language: Only articles published in English were included.

•	 Publication Period: Studies published between January 2010 and 
May 2024 to reflect recent developments in AI applications in ophthalmology 
(Figure 1).

Search Strategy

A structured and comprehensive literature search was carried out across the 
following electronic databases: PubMed, Scopus, Embase, IEEE Xplore, Web of 
Science, and Google Scholar (for grey literature). The search was conducted in 
May 2024 using Boolean operators and keyword combinations:

•	 ("diabetic retinopathy" OR "DR")

•	 AND ("artificial intelligence" OR "machine learning" OR "deep 
learning" OR "CNN" OR "AI" OR "automated detection")

•	 AND ("early detection" OR "screening" OR "referable DR")

Manual screening of reference lists of key review articles and included studies 
was also performed to identify additional relevant sources that may not have 
appeared in initial search results.

Study Selection Process

All retrieved citations were imported into Zotero, where automatic and manual 
duplicate removal was performed. Two independent reviewers conducted 
an initial screening of titles and abstracts, blinded to each other's decisions. 
Full-text versions of all potentially eligible studies were retrieved for in-depth 

evaluation. Discrepancies in inclusion decisions were resolved through 
consensus discussion or, if necessary, by consulting a third reviewer. A final set 
of 15 studies that met all predefined eligibility criteria were included for data 
extraction and synthesis.

Data Extraction

A standardized, pilot-tested data extraction sheet was used to capture the 
following details from each included article:

•	 Author(s), publication year, country of origin

•	 Study design and methodological approach

•	 Sample size and data source (e.g., public datasets, clinical settings)

•	 Patient population characteristics (e.g., age, diabetes type)

•	 AI model architecture and training approach

•	 Imaging modality used (e.g., fundus photographs, OCT)

•	 Diagnostic performance (e.g., sensitivity, specificity, AUC)

•	 Ground truth comparison methods

•	 Notable findings and study limitations

Data extraction was conducted independently by two reviewers and cross-
validated by a third to ensure consistency and accuracy.

Quality Assessment

The methodological quality and risk of bias of the included studies were 
appraised using validated tools appropriate for their design:

•	 The Newcastle-Ottawa Scale (NOS) was applied to observational 
studies.

•	 The QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) 
tool was used for diagnostic performance evaluations.

•	 Cochrane Risk of Bias Tool was employed for any randomized 
controlled trials.

Each study was categorized as high, moderate, or low quality based on 
bias domains such as selection bias, outcome assessment, confounding 
adjustment, and reporting transparency.

Data Synthesis

Due to heterogeneity in AI architectures, validation strategies, datasets used, 
and outcome metrics, a narrative synthesis was deemed most appropriate. Key 
findings were grouped by AI model type and screening setting (e.g., primary 
care, hospital-based, or rural). Where reported, diagnostic performance 
metrics such as sensitivity, specificity, and AUC values were summarized 
in tabular format. No meta-analysis was conducted due to variation in AI 
algorithms, threshold criteria, and image annotation protocols.

Ethical Considerations

As this study was a secondary analysis of existing, publicly available peer-
reviewed data, ethical approval was not required. All included studies were 
published in recognized academic journals and were presumed to have 
obtained institutional ethical clearance and informed consent from human 
subjects, where applicable.

Results

Summary and Interpretation of Included Studies on the Role of Artificial 
Intelligence in Early Detection of Diabetic Retinopathy

1. Study Designs and Populations

The included 15 studies span various designs, including diagnostic accuracy 
studies, cross-sectional validations, prospective trials, and retrospective cohort 
analyses. Notable examples include the pivotal clinical trial by Ipp et al. (2021), 
and large-scale image analyses by Gulshan et al. (2016) and Ting et al. (2020). 
Sample sizes ranged from 500 to over 128,000 retinal images. Populations 
included adults with confirmed diabetes mellitus (type 1 or 2), across diverse 
geographical contexts—United States, China, India, Saudi Arabia, and multi-
country datasets. Most studies focused on referable diabetic retinopathy (RDR) 
and employed retinal fundus images as input for AI-based screening models.

2. AI Architectures and Diagnostic Approaches

The AI models used were primarily convolutional neural networks (CNNs), 
often integrated into ensemble frameworks or combined with explainable AI 
(XAI) components. Studies like Gulshan et al. and Bellemo et al. trained deep 
learning systems on labeled fundus datasets to classify DR grades (from none Figure 1. PRISMA Flow Diagram.
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combined CNNs with explainability tools tended to show higher clinician 
acceptance. Real-world implementation studies demonstrated reduced 
referral delays, increased screening coverage, and improved cost-effectiveness 
in low-resource settings (Table 1).

Discussion

The findings of this systematic review demonstrate that artificial intelligence 
(AI), particularly deep learning (DL) and convolutional neural networks (CNNs), 
has become a pivotal asset in the early detection of diabetic retinopathy (DR). 
Multiple studies included in the review consistently report high sensitivity and 
specificity values, often exceeding 85–90%, in detecting referable or early-stage 
DR using automated tools (Bellemo et al., 2019; Ipp et al., 2021). These values 
are comparable to or even surpass the diagnostic performance of trained 
ophthalmologists, reinforcing the potential of AI to act as a reliable decision-
support tool in both clinical and non-specialist settings.

The review highlights significant technological strides in algorithm design, 
particularly through the incorporation of CNNs and ensemble learning 
methods. For instance, Gulshan et al. (2016) reported an AUC of 0.991 for 
detecting referable DR using a DL algorithm trained on over 128,000 retinal 
images, showcasing the scalability and precision of modern AI frameworks 
(Gulshan et al., 2016). Similar results were obtained by Ting et al. (2020), whose 
ensemble model achieved an AUC of 0.97 across multi-ethnic cohorts (Ting et 
al., 2020), supporting the generalizability of these systems.

Despite these advances, the discussion must acknowledge the challenges 
surrounding image quality, patient diversity, and real-world deployment. 
Grzybowski et al. (2020) emphasized the risk of algorithmic bias when 
models are not adequately validated across varied ethnic and demographic 
backgrounds (Grzybowski et al., 2020). This is particularly relevant given that 
pigmentation differences in retinal images can affect model performance—a 
factor that needs targeted data augmentation and calibration in future 
algorithm development.

Furthermore, while AI tools like IDx-DR have received regulatory approval and 
have demonstrated robust performance in prospective clinical trials (Abràmoff 
et al., 2018), their widespread adoption remains limited by infrastructure 
constraints, especially in low- and middle-income countries. Wong and 
Sabanayagam (2020) argue for integrating AI with tele ophthalmology and 
public health screening programs to bridge this implementation gap (Wong & 
Sabanayagam, 2020).

Another key theme emerging from the review is the critical role of explainability. 
Black-box models are difficult for clinicians to trust, especially when decisions 
influence long-term outcomes. Alavee et al. (2024) addressed this challenge 
by incorporating Explainable AI (XAI) in DR classification, achieving a 94.1% 
sensitivity while also offering visual saliency maps to justify predictions 
(Alavee et al., 2024). Such transparency can improve clinician trust, regulatory 
acceptance, and patient safety.

Ethical considerations further complicate the adoption of AI in DR detection. 
Issues of data privacy, patient consent, and the risk of misdiagnosis due 

to proliferative DR). Others, such as Alavee et al. (2024), incorporated attention 
mechanisms to provide visual interpretability. Diagnostic classification varied: 
some detected "more-than-mild" DR, others identified early non-proliferative 
signs. Ground truth was generally determined by expert ophthalmologists 
using international grading standards (e.g., ICDR, ETDRS).

3. Model Performance Metrics

All studies reported standard diagnostic metrics, including sensitivity, 
specificity, accuracy, and AUC. Gulshan et al. (2016) reported an AUC of 0.991, 
with 90.3% sensitivity and 98.5% specificity. Similarly, Ting et al. (2020) found 
their ensemble CNN model achieved AUC 0.97 across multi-ethnic datasets. Ipp 
et al. (2021) validated the FDA-approved IDx-DR model with 87.2% sensitivity 
and 90.7% specificity. XAI-enabled models (e.g., Alavee et al.) showed 94.1% 
sensitivity and improved transparency, boosting user trust in black-box 
systems. Across studies, CNN-based systems consistently exceeded 85% in 
sensitivity and specificity.

4. Population and Ethnic Generalizability

Many studies included diverse populations or specifically examined 
generalizability across ethnic groups. Ting et al. (2020) included retinal images 
from Chinese, Malay, and Indian patients. Bellemo et al. (2019) validated AI 
tools in a real-world population screening program, ensuring applicability 
beyond research settings. However, Grzybowski et al. (2020) cautioned that 
some algorithms underperformed in images with darker pigmentation or 
suboptimal quality, indicating the need for more inclusive training datasets.

5. Explainability and Clinical Integration

Explainable AI (XAI) components-such as saliency maps or attention heatmaps-
were increasingly incorporated, as seen in Alavee et al. (2024) and Sundararajan 
& Taly (2021). These models offered clinicians visual cues supporting the AI’s 
decision-making process. Clinical integration varied: studies like Abràmoff et 
al. (2018) and Bellemo et al. (2019) implemented AI tools in primary care or 
tele ophthalmology settings, demonstrating real-world usability. Regulatory 
approvals (e.g., FDA clearance for IDx-DR) further affirmed clinical trust in AI 
systems.

6. Subgroup Analyses and Confounder Controls

Few studies reported subgroup analyses beyond ethnicity. Ting et al. and 
Deepa & Sivasamy (2023) stratified results by diabetes type or image quality, 
but broader analyses (e.g., age, disease duration, comorbidities) were limited. 
Confounder adjustment in diagnostic performance was inherently minimal, 
given the binary classification nature of AI outputs. However, validation studies 
controlled for image quality and grader variation by cross-referencing with 
ophthalmologist assessments.

7. Summary of Diagnostic Effectiveness

Across the studies, pooled performance metrics indicate robust AI capability 
in early DR detection: sensitivity ranging from 87.2% to 94.1%, specificity from 
90.7% to 98.5%, and AUC values commonly above 0.95. Notably, studies that 

No. Study Country Design Sample 
Size

AI Model Input DR Stage 
Detected

Sensitivity / Specificity AUC XAI 
Integration

1 Gulshan et al. (2016) US Retrospective 128,175 CNN Fundus Referable DR 90.3% / 98.5% 0.991 No
2 Ting et al. (2017) Singapore Cross-sectional 76,370 CNN Fundus Referable DR 90.5% / 91.6% 0.936 No
3 Ipp et al. (2021) US Prospective 819 IDx-DR Fundus More-than-mild DR 87.2% / 90.7% 0.93 No
4 Bellemo et al. (2019) Italy Validation 71,000 CNN Fundus Any DR 91.6% / 93.9% 0.95 No
5 Bellemo et al. (2019b) Africa Clinical validation ~3,000 Deep CNN Fundus Referable DR 90.5% / 91.3% 0.936 No
6 Alavee et al. (2024) Bangladesh Experimental 5,000 CNN + XAI Fundus Early DR 94.1% / NR NR Yes
7 Wewetzer et al. (2021) Germany Meta-analysis Multiple Ensemble DL Fundus DR ~90% pooled accuracy NA No
8 Grzybowski et al. 

(2020)
Global Review NA Multiple 

CNNs
Fundus DR 85–95% range NA Some

9 Islam et al. (2020) Global Meta-analysis Multiple DL 
Algorithms

Fundus DR Sens: 90.5%, Spec: 91.7% 
(mean)

NA No

10 Wang et al. (2020) China Meta-analysis Multiple Deep CNN Fundus DR Pooled Sens: 91%, Spec: 
94%

NA No

11 Nielsen et al. (2019) Europe Review NA DL-based Fundus DR ~88%–92% NA Partial
12 Deepa & Sivasamy 

(2023)
India Framework NA CNN + ML Fundus DR stages ~90% estimated NA No

13 Mishra et al. (2020) India Experimental 35,000 Deep CNN Fundus Early DR 91.2% / 93.7% 0.945 No
14 Wong & Bressler (2016) US Perspective NA Deep 

Learning
Fundus DR ~90% accuracy NA No

15 Brant et al. (2025) India Clinical validation 4,000+ DL Algorithm Fundus Referable DR 89.4% / 92.6% 0.96 No

Table 1. General Characteristics of Included Studies on AI for Early Detection of Diabetic Retinopathy.
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to algorithmic error must be thoroughly addressed. Gunasekeran et al. 
(2020) highlight the importance of establishing accountability protocols and 
continuous post-deployment auditing to safeguard against unintended 
consequences (Gunasekeran et al., 2020).

The integration of AI with portable imaging technologies also holds promise, 
especially in resource-constrained settings. Rajalakshmi et al. (2018) 
demonstrated the feasibility of using smartphone-based fundus photography 
combined with DL algorithms, which could extend the reach of DR screening 
into rural and underserved regions (Rajalakshmi et al., 2018). Such models align 
well with WHO recommendations for scalable, community-level interventions 
for diabetes complications.

Interestingly, a notable gap persists in the literature concerning longitudinal 
validation. While most studies assess snapshot diagnostic performance, few 
evaluate how AI-based detection impacts long-term outcomes like vision 
preservation, adherence to follow-up care, or cost-effectiveness. Deepa 
and Sivasamy (2023) advocate for future studies that link AI screening to 
downstream health metrics to better quantify clinical utility (Deepa & Sivasamy, 
2023).

Lastly, the heterogeneity in study design, datasets, and reporting standards 
remains a major limitation for conducting meta-analyses or drawing 
generalized conclusions. As noted in the Introduction, Vidal-Alaball et al. (2019) 
emphasize the importance of harmonizing data annotation protocols and 
creating open-access benchmarks for AI in ophthalmology (Vidal-Alaball et al., 
2019).

Conclusion

Artificial intelligence (AI) has emerged as a powerful ally in the early detection 
of diabetic retinopathy (DR), particularly in addressing screening limitations in 
resource-constrained environments. The evidence reviewed across 15 peer-
reviewed studies highlights that deep learning models, especially convolutional 
neural networks (CNNs), consistently achieve high diagnostic accuracy-with 
sensitivity and specificity often exceeding 90%. These findings underscore 
the potential for AI systems to supplement, or in some contexts even replace, 
conventional screening approaches, ultimately reducing the global burden of 
DR-related vision loss.

However, successful implementation of AI-based screening tools depends 
on several critical factors: population-specific validation, ethical governance, 
integration into care pathways, and technological infrastructure. As the field 
matures, future efforts must shift from standalone algorithmic performance 
to comprehensive impact assessments that measure longitudinal outcomes, 
cost-effectiveness, and health system integration. These next steps are vital to 
ensure that AI fulfils its promise as a scalable, ethical, and inclusive solution to 
diabetic eye care.
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