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Abstract

Background: Breast cancer remains the most prevalent cancer among women worldwide, and accurate
detection is essential for improving outcomes. Recent advancements in imaging, artificial intelligence (Al), and
molecular diagnostics have significantly enhanced diagnostic capabilities, yet their clinical translation remains
uneven.

Objective: To systematically review recent evidence on breast cancer detection technologies, focusing on
imaging modalities, Al applications, and emerging biomarkers.

Methods: A systematic review was conducted in accordance with PRISMA 2020 guidelines. Records were
identified through database and manual searches (n = 427), with 395 remaining after deduplication. Following
screening, 43 full-text articles were assessed, and 12 studies met inclusion criteria. Eligible studies included
peer-reviewed research from 2016 to 2025 that evaluated imaging technologies, Al-based models, or molecular
approaches for breast cancer detection.

Results: Evidence highlights the enhanced performance of tom synthesis, cone-beam CT, and automated
ultrasound in complementing traditional mammography and handheld ultrasound. Al and deep learning
models significantly improved lesion detection, classification, and risk assessment across modalities. Emerging
approaches such as microwave imaging, Nano platform-based imaging, and extracellular vesicle biomarkers
show promise for early detection. Despite these advances, challenges including dataset heterogeneity, cost, and
limited clinical validation remain.

Conclusion: Advancements in imaging, Al, and molecular diagnostics are reshaping breast cancer detection.
The future lies in multimodal, integrative approaches that combine anatomical, computational, and molecular
data. Translation into clinical practice will require large-scale validation, standardization, and strategies to
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Introduction

Breast cancer remains one of the leading causes of morbidity and mortality
among women worldwide, emphasizing the urgent need for accurate, timely,
and accessible diagnostic technologies. Advances in screening and detection
methods have significantly improved early-stage identification, yet challenges
persist in achieving consistent diagnostic accuracy across populations (Abdul
Halim et al., 2021). Emerging imaging modalities and computational methods
are increasingly integrated into diagnostic workflows, aiming to reduce
variability and enhance sensitivity in detection.

The incorporation of artificial intelligence (Al) and machine learning has
further transformed breast cancer detection strategies. By automating
feature extraction and classification processes, these systems can handle
the vast and complex datasets generated by medical imaging technologies,
surpassing traditional approaches in predictive power (Shah et al., 2021). Al-
driven algorithms show promise in minimizing human error and enhancing
reproducibility, particularly in mammography and ultrasound-based screening
programs.

Deep learning, a subset of Al, has become especially pivotal in breast cancer
imaging research. Its ability to automatically learn hierarchical features
from imaging data enables improved detection of subtle malignancies, even
in dense breast tissues where conventional methods often fail (Luo et al,,
2024). The past decade has witnessed rapid progress in convolutional neural
networks (CNNs) applied to mammography, MRI, and ultrasound, highlighting
their potential for clinical adoption.

Beyond Al and deep learning, alternative imaging technologies have been
explored to complement conventional mammography. Microwave imaging, for
instance, provides a radiation-free and potentially cost-effective modality that
has shown encouraging results in early breast cancer detection (AlSawaftah et
al., 2022). While still facing challenges in clinical translation, such techniques
could serve as adjunct diagnostic tools in resource-limited settings.

Despite significant advancements, variability in imaging data, segmentation

ensure accessibility across diverse healthcare settings.

challenges, and classification accuracy remain key barriers. Many image-
based approaches have been proposed to address these limitations, focusing
on improved pre-processing, tumor localization, and multi-modal fusion
(Rezaei, 2021). The evolution of these methods underscores the critical role of
computational innovations in refining detection workflows.

Parallel to imaging innovations, broader trends in medical imaging modalities
have highlighted their importance in disease diagnosis, including breast
cancer. Recent studies emphasize the integration of hybrid imaging systems,
big data analytics, and computational frameworks to enhance diagnostic
accuracy across different cancers, reinforcing the multidisciplinary nature of
detection technologies (Abhisheka et al., 2024).

Comprehensive systematic reviews of computer-aided diagnosis approaches
reveal the breadth of computational methods being tested, from traditional
feature-based models to more advanced deep learning architectures (Zebari
et al., 2021). These reviews highlight the dynamic evolution of diagnostic
strategies and provide insights into the strengths and limitations of various
algorithmic approaches.

Finally, detection technologies cannot be divorced from their clinical context.
As highlighted in theranostics-focused reviews, innovations in imaging
are tightly coupled with advancements in treatment personalization and
prognosis prediction (Bhushan et al., 2021). This co-evolution of diagnostics
and therapeutics reflects a broader trend toward precision medicine, where
accurate detection is central to tailoring interventions and improving patient
outcomes (Umadevi et al., 2025; Tufail et al., 2021).

Methodology
Study Design

This study employed a systematic review methodology, following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020
guidelines to ensure transparent and replicable reporting. The primary
objective was to synthesize existing empirical evidence on emerging imaging
and computational technologies for breast cancer detection, focusing on their
diagnostic accuracy, clinical applicability, and limitations. The review targeted
peer-reviewed journal articles that evaluated novel imaging modalities,
artificial intelligence (Al)-based algorithms, or hybrid diagnostic frameworks
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for breast cancer diagnosis and screening.
Eligibility Criteria
Studies were included based on the following predefined criteria:

. Population: Women aged 218 years undergoing breast cancer
screening, diagnosis, or follow-up, regardless of risk status.

. Interventions/Exposures: Imaging and computational techniques
for breast cancer detection, including mammography, ultrasound, MRI,
microwave imaging, Nano platform-based methods, artificial intelligence, and
deep learning models.

. Comparators: Conventional diagnostic techniques (e.g.,
mammography vs. ultrasound), human expert interpretation vs. machine
learning algorithms, or variations between imaging modalities.

. Outcomes: Diagnostic performance indicators such as sensitivity,
specificity, accuracy, area under the receiver operating characteristic curve
(AUC), as well as clinical outcomes including early detection rates, tumour
staging accuracy, and reduction in false positives/negatives.

. Study Designs: Randomized controlled trials (RCTs), cohort studies,
cross-sectional analyses, case-control studies, and systematic reviews or meta-
analyses relevant to breast cancer detection technologies.

. Language: Only studies published in English were included.

. Publication Period: 2010-2025 to capture
advancements in imaging and Al-based diagnostic tools.

contemporary

Search Strategy

A structured search strategy was implemented across major academic
databases, including PubMed, Scopus, Web of Science, Embase, and IEEE
Xplore, complemented by Google Scholar for grey literature. Boolean operators
were used to combine search terms such as:

. (“breast cancer” OR “breast neoplasm” OR “breast tumor")
. AND (“detection” OR “diagnosis” OR “screening”)
. AND (“mammography” OR “ultrasound” OR “MRI” OR “microwave

imaging” OR “Nano platform” OR “Al" OR “artificial intelligence” OR “deep
learning” OR “machine learning”)

Manual searches of reference list from relevant reviews were also conducted
to identify additional studies not captured by database queries.

Study Selection Process

All retrieved citations were imported into Zotero for organization and duplicate
removal. The selection process followed two screening stages:

1. Title and abstract screening: Performed independently by two
reviewers to exclude irrelevant studies.

2. Full-text screening: Remaining studies were reviewed in detail to
confirm eligibility.

Discrepancies in inclusion were resolved through consensus or by consulting
a third reviewer. A total of 427 records were identified (412 from databases,
15 from other sources), reduced to 395 after duplicate removal. Following
screening, 43 full-text articles were assessed, and 12 studies were included in
the final synthesis. A visual summary of the process is provided in the PRISMA
flow diagram (Figure 1).

Data Extraction

A standardized data extraction template was used to ensure consistency. Key
information extracted from each study included:

. Author(s), year of publication, and country

. Study design and sample size

. Population demographics and clinical characteristics

. Imaging or computational method evaluated

. Comparator(s) used

. Diagnostic performance metrics (e.g., sensitivity, specificity,
accuracy, AUC)

. Key findings and clinical implications

. Limitations reported by the authors

Data extraction was performed independently by two reviewers and verified

412 records from
databases

15 records from other
sources

395 after deduplication

43 full-text assessed

12 final studies included

Figure 1. PRISMA Flow Diagram.

for accuracy by a third reviewer.
Quality Assessment

The methodological quality and risk of bias of the included studies were
appraised using tools appropriate to study design:

. Newcastle-Ottawa Scale (NOS) for observational studies.

. Cochrane Risk of Bias Tool (RoB 2.0) for randomized controlled
trials.

. AMSTAR-2 for systematic reviews included in the synthesis.

Studies were rated as low, moderate, or high quality, depending on selection
bias, comparability, outcome assessment, and reporting transparency.

Data Synthesis

Given the heterogeneity of study designs, diagnostic modalities, and outcome
measures, a narrative synthesis approach was applied. Findings were grouped
under major themes:

1. Traditional imaging methods (mammography, ultrasound, MRI).

2. Emerging modalities (microwave imaging, Nano platform-based
imaging).

3. Artificial intelligence and deep learning approaches for breast

cancer detection.

Where possible, key diagnostic performance statistics (e.g., sensitivity,
specificity, accuracy) were reported. Due to variations in study design and
outcome definitions, no meta-analysis was conducted.

Ethical Considerations

As this study is a secondary analysis of published peer-reviewed data, no
ethical approval or informed consent was required. All included studies were
assumed to have undergone appropriate institutional ethical review prior to
publication.

Results

Summary and Interpretation of Included Studies on Emerging Trends in Breast
Imaging and Cancer Detection
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1. Study Designs and Populations

The included studies span retrospective, prospective, cross-sectional, and
randomized trial designs. Sample sizes ranged from small-scale surgical
cohorts (Urano et al., 2016; n = 65) to large-scale population-based screening
programs (Lauritzen et al., 2023; n = 119,650). Ages varied across studies,
with most including middle-aged to older women, though Ahmed et al. (2023)
included women as young as 30 years. Modalities assessed included digital
mammography (DM), digital breast tomosynthesis (DBT), automated breast
ultrasound (ABUS), handheld ultrasound (HHUS), breast cone-beam computed
tomography (BCBCT), and multidetector CT (MDCT).

2. Comparative Diagnostic Performance

Several studies compared traditional mammography to newer imaging
modalities. For example, Lang et al. (2016) demonstrated a significantly higher
cancer detection rate with DBT compared to DM (8.9/1000 vs. 6.3/1000; p <
0.0001), while Urano et al. (2016) found DBT superior for lesion delineation
compared to DM (45% vs. 6.2%, p < 0.0001). Niu et al. (2019) reported that
ABUS achieved higher sensitivity than HHUS (92.23% vs. 82.52%; p < 0.01) and
a larger AUC (0.85 vs. 0.81; p < 0.05). Gouda et al. (2024) showed that adding
ABUS to FFDM improved PPV (83.5% vs. 74.5%) and reduced recalls.

3. Clinical Applications in High-Risk and Complex Cases

Borowiec et al. (2025) highlighted that cross-sectional imaging (CT and PET-CT)
altered staging in 36.8% and 51.2% of high-risk cases, respectively, significantly
affecting radiation therapy planning. Felipe et al. (2020) showed that MDCT
demonstrated substantial agreement with MRI (k = 0.674-1.000) across staging
features, supporting MDCT as a potential one-stop staging modality. Similarly,
Formaz et al. (2023) found that breast CT provided higher diagnostic confidence
than mammography in 90-98% of cases, though with artifact issues.

4. Al and Texture-Based Risk Stratification

Lauritzen et al. (2023) demonstrated the power of combining Al lesion
detection with mammographic texture risk models. In 119,650 screened
women, the combined model achieved an AUC of 0.73, outperforming either Al
(0.70) or texture (0.66) alone. Notably, the top 10% highest-risk group identified
accounted for 44.1% of interval cancers and 33.7% of long-term cancers.

5. Summary of Effect Estimates

Across modalities, DBT consistently improved cancer detection over DM, ABUS
enhanced sensitivity and PPV compared to FFDM or HHUS, and cross-sectional

imaging significantly influenced staging and treatment planning in high-risk
patients. Al integration into screening showed promise in stratifying women at
risk for both short- and long-term cancers (Table 1).

Discussion

Breast cancer remains one of the most challenging diseases to diagnose
and manage due to its heterogeneity and the limitations of existing imaging
techniques. Conventional modalities such as mammography and ultrasound
continue to form the backbone of breast cancer detection, but advances in
tomosynthesis, computed tomography (CT), and automated ultrasound
have expanded diagnostic capabilities. For example, Ahmed et al. (2023)
highlighted the complementary role of tomosynthesis and ultrasound in
assessing asymmetric densities, while Urano et al. (2016) demonstrated that
digital breast tomosynthesis offers superior intraoperative cancer detection
compared with standard mammography. Similarly, Lang et al. (2016) provided
evidence from large-scale screening trials that tomosynthesis could function as
a stand-alone modality, emphasizing its diagnostic robustness.

Beyond mammography, CT-based methods have also shown potential.
Felipe et al. (2020) demonstrated that dedicated CT protocols are feasible for
locoregional staging, and Formaz et al. (2023) validated breast-dedicated CT in
women with prior breast cancer, supporting its clinical utility. Cone-beam CT
studies, such as that of He et al. (2016), further confirmed that this technology
provides reliable lesion characterization when compared to ultrasound and
digital mammography. Such findings emphasize the role of CT innovations in
complementing and potentially streamlining breast cancer imaging workflows.

Ultrasound advancements have also significantly improved breast imaging,
particularly in women with dense breast tissue. Gouda et al. (2024) confirmed
that automated breast ultrasound added diagnostic value in dense breasts,
aligning with Niu et al. (2019), who showed its diagnostic superiority
over handheld ultrasound. Moreover, Raza et al. (2023) introduced Deep
Breast Cancer Net, a deep learning-enhanced ultrasound model, further
demonstrating how Al augments traditional modalities. Together, these
studies affirm that automation and Al integration make ultrasound a powerful
tool in early breast cancer detection.

Microwave imaging has emerged as another promising technology. AlSawaftah
et al. (2022) reviewed its potential for early detection, noting advantages in
safety and non-ionizing radiation, while Wang (2023) expanded on technical
progress in microwave sensing techniques. Both studies emphasized that
although clinical integration is limited, microwave imaging provides a low-cost,

Table 1. General Characteristics of Included Studies.

Study Country Design Sample Size | Age (Mean/
Range)

Lauritzen et Denmark Retrospective 119,650 Median 59 (IQR
al. (2023) 53-64)
Ahmed et al. Egypt Prospective 80 30-70 (mean 47.2
(2023) +9.2)
Gouda etal. | Egypt Retrospective 500 Dense breasts
(2024) (ACR C&D)
Niu et al. China Cross-sectional 398 (599 Not specified
(2019) masses)
Borowiec et  Poland Prospective 132 Not specified
al. (2025)
Lang et al. Sweden Prospective 7,500 (of 40-74
(2016) population-based 15,000

planned)
Uranoetal. Japan Prospective 65 specimens |Median 62 (34-86)
(2016)
He et al. China Prospective 212 Not specified
(2016)
Felipeetal. Brazil Prospective 33 Mean 47
(2020)
Formaz et al. |Switzerland Retrospective 32 (PHBQ) Not specified

(2023)

Modality Compared  Key Outcomes Effect Estimates

Al lesion detection + AUC: Al 0.70, Texture 0.66,
mammographic texture |Combined 0.73

Top 10% risk group
captured 44.1%
interval cancers,
33.7% long-term
cancers

DBT vs. US DBT: Sens. 86.4%, Spec. Accuracy higher with
93.1%; US: Sens. 100%, Spec. | US (95% vs. 91.3%)

93.1%

Adding ABUS improved PPV
from 74.5% to 83.5%

FFDM vs. FFDM+ABUS Recall reduced,
agreement k = 0.51

(p <0.001)

AUC: ABUS 0.85 vs.
HHUS 0.81 (p < .05)
X2(1)=18.98, p<0.001
(CT); x¥(1)=6.41,
p=0.03 (PET-CT)
Detection rate: 8.9/1000 Recall: 3.8% vs. 2.6%
(DBT) vs. 6.3/1000 (DM), (p<0.0001), PPV: both
p<0.0001 24%

DBT detected more invasive DBT delineated
lesions in LL views (71% vs. |lesions better (45%
13%, p<0.0001) vs. 6.2%, p<0.0001)

CE-BCBCT sensitivity 98.7% | AUC: CE-BCBCT

ABUS vs. HHUS Sensitivity: ABUS 92.23% vs.

HHUS 82.52% (p <.01)
Staging changed in 36.8%
(CT) and 51.2% (PET-CT)

CT/PET-CT vs. MMG/US

DBT vs. DM

DBT vs. DM (surgical

specimens)

BCBCT, CE-BCBCT, US,

MG vs. BCBCT 78.4% 0.869, BCBCT 0.846,
US 0.834, MG 0.782
MDCT vs. MRI Agreement substantial- Tumor extension K =

perfect (k = 0.613-1.000) 0.674; multicentricity

K =0.857
B-CT vs. Mammography |Higher diagnostic confidence Artifacts in 29.4%
in 90-98% of cases due to clips
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safe alternative that could complement or even replace traditional modalities
in certain contexts.

Artificial intelligence (Al) and deep learning (DL) have revolutionized breast
imaging by enabling higher diagnostic accuracy and efficiency. Abhisheka et
al. (2023) provided a comprehensive review on deep learning applications in
detection, segmentation, and classification, while Nasser and Yusof (2023)
highlighted systematic advancements in Al-based diagnosis. Complementary
studies, including Shah et al. (2021) and Meenalochini and Ramkumar
(2021), showcased Al's capability to outperform conventional algorithms in
mammogram analysis. These findings collectively confirm Al's transformative
role in breast cancer imaging.

Moreover, deep learning has proven particularly effective when integrated
with existing imaging modalities. Balkenende et al. (2022) emphasized its
clinical translation in nuclear medicine, and Ben Ammar et al. (2024) reviewed
datasets and methodological challenges for early detection. Luo et al.
(2024) synthesized a decade of Al advancements, demonstrating significant
improvements in interpretability and generalizability. Similarly, Tufail et al.
(2021) and Wang et al. (2022) discussed hybrid deep learning approaches for
cancer detection, stressing the importance of combining traditional imaging
with computational intelligence.

Risk assessment using Al-based image analysis is another emerging frontier.
Lauritzen et al. (2023) demonstrated how mammographic texture combined
with lesion detection algorithms improves personalized risk stratification.
Zebari et al. (2021) supported this by systematically reviewing computing
approaches for CAD systems, which significantly reduce diagnostic variability.
Together, these works illustrate how Al-driven risk models may shift breast
cancer care from detection alone toward comprehensive prediction and
prevention strategies.

While imaging and Al form the core of current advancements, molecular
biomarkers and nanotechnology-based imaging are expanding diagnostic
frontiers. Lee et al. (2023) reported the diagnostic value of extracellular vesicle
biomarkers, suggesting a role for liquid biopsy in complementing imaging
findings. Umadevi et al. (2025) further highlighted how Nano platforms
enhance cancer imaging, enabling multimodal and targeted approaches.
These innovations suggest that future breast cancer detection will combine
anatomical, functional, and molecular insights for greater precision.

Clinical guidelines and screening strategies remain central to implementation.
Monticciolo et al. (2021) emphasized inclusive breast cancer screening
recommendations, advocating for risk-adapted strategies that integrate
imaging innovations. Bhushan et al. (2021) similarly underscored the
importance of aligning detection with treatment and theranostics, bridging
diagnostic advances with therapeutic outcomes. These perspectives ensure
that technological progress translates into meaningful clinical benefit.

Despite these advances, significant challenges remain. Abdul Halim et al. (2021)
and Rezaei (2021) both underscored barriers to clinical adoption, such as cost,
limited datasets, and variability in imaging protocols. Abhisheka et al. (2024)
echoed these concerns, highlighting the need for multimodal integration and
standardization. The gap between laboratory innovation and routine clinical
deployment remains a key barrier.

In clinical practice, imaging advancements must also address complex
scenarios, such as locally advanced or surgically inaccessible breast cancer.
Borowiec et al. (2025) demonstrated how cross-sectional imaging supports
customized radiation therapy in such patients, underscoring the vital role of
advanced imaging in guiding treatment decisions. This aligns with Raza et al.
(2023), who emphasized the treatment-planning benefits of Al-augmented
ultrasound imaging.

Importantly, multiple studies reveal the synergistic role of combining modalities
rather than relying on a single tool. Ahmed et al. (2023), Gouda et al. (2024),
and Felipe et al. (2020) all demonstrated improved diagnostic accuracy when
two or more modalities were combined. Such findings advocate for hybrid
diagnostic models that integrate imaging, Al, and molecular data into a unified
diagnostic pathway.

Looking ahead, the convergence of imaging modalities, computational
intelligence, and molecular diagnostics will define the future of breast cancer
detection. The literature strongly supports a transition toward multimodal,
personalized strategies (Luo et al., 2024; Umadevi et al., 2025). However,
widespread clinical translation requires large-scale validation, robust
regulatory frameworks, and equitable access, particularly in low-resource
settings (Abdul Halim et al., 2021; AlSawaftah et al., 2022).

In summary, the reviewed evidence indicates that no single technology will
solve the challenges of breast cancer detection. Instead, the integration of
advanced imaging, Al, molecular biomarkers, and clinical guidelines offers
the most promising pathway forward. Continued collaboration between

radiologists, computer scientists, and oncologists will be essential in achieving
precision detection that ultimately improves patient outcomes worldwide.

Conclusion

This systematic review synthesized evidence from 2016-2025 to evaluate
advancements in breast cancer detection technologies, including imaging
modalities, artificial intelligence (Al), and molecular biomarkers. The findings
demonstrate that while conventional methods such as mammography,
ultrasound, and computed tomography remain foundational, significant
improvements have been achieved through tomosynthesis, automated
ultrasound, and dedicated CT approaches. The integration of Al and deep
learning across these modalities has enhanced diagnostic accuracy, risk
stratification, and workflow efficiency. Additionally, emerging frontiers such
as microwave imaging, extracellular vesicle biomarkers, and Nano platform-
based imaging offer promising directions for early detection and personalized
diagnostics.

Despite these advances, challenges persist in translating innovations into
clinical practice. Cost, limited datasets, heterogeneous protocols, and
variability in access remain barriers to widespread adoption. Evidence suggests
that a multimodal, integrative approach—combining imaging, computational
intelligence, and molecular diagnostics—will be necessary to achieve precision
breast cancer detection. Collaborative efforts between clinicians, researchers,
and technology developers are critical to ensure that these advancements
result in improved patient outcomes and equitable access to care.

Limitations

This review has several limitations. First, the included studies exhibited
considerable heterogeneity in populations, imaging modalities, and outcome
measures, which precluded meta-analysis. Second, most Al-based studies
were retrospective and relied on limited or non-standardized datasets,
raising concerns about generalizability. Third, cost-effectiveness analyses
and patient-centered outcomes were rarely reported, limiting insights into
real-world feasibility. Additionally, the review was restricted to English-
language publications, potentially excluding relevant studies from non-English
databases. Finally, while this review highlights emerging technologies such
as microwave imaging and Nano platforms, many remain in early stages of
validation, and their clinical utility is yet to be established.
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