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Introduction

Breast cancer remains one of the leading causes of morbidity and mortality 
among women worldwide, emphasizing the urgent need for accurate, timely, 
and accessible diagnostic technologies. Advances in screening and detection 
methods have significantly improved early-stage identification, yet challenges 
persist in achieving consistent diagnostic accuracy across populations (Abdul 
Halim et al., 2021). Emerging imaging modalities and computational methods 
are increasingly integrated into diagnostic workflows, aiming to reduce 
variability and enhance sensitivity in detection.

The incorporation of artificial intelligence (AI) and machine learning has 
further transformed breast cancer detection strategies. By automating 
feature extraction and classification processes, these systems can handle 
the vast and complex datasets generated by medical imaging technologies, 
surpassing traditional approaches in predictive power (Shah et al., 2021). AI-
driven algorithms show promise in minimizing human error and enhancing 
reproducibility, particularly in mammography and ultrasound-based screening 
programs.

Deep learning, a subset of AI, has become especially pivotal in breast cancer 
imaging research. Its ability to automatically learn hierarchical features 
from imaging data enables improved detection of subtle malignancies, even 
in dense breast tissues where conventional methods often fail (Luo et al., 
2024). The past decade has witnessed rapid progress in convolutional neural 
networks (CNNs) applied to mammography, MRI, and ultrasound, highlighting 
their potential for clinical adoption.

Beyond AI and deep learning, alternative imaging technologies have been 
explored to complement conventional mammography. Microwave imaging, for 
instance, provides a radiation-free and potentially cost-effective modality that 
has shown encouraging results in early breast cancer detection (AlSawaftah et 
al., 2022). While still facing challenges in clinical translation, such techniques 
could serve as adjunct diagnostic tools in resource-limited settings.

Despite significant advancements, variability in imaging data, segmentation 

challenges, and classification accuracy remain key barriers. Many image-
based approaches have been proposed to address these limitations, focusing 
on improved pre-processing, tumor localization, and multi-modal fusion 
(Rezaei, 2021). The evolution of these methods underscores the critical role of 
computational innovations in refining detection workflows.

Parallel to imaging innovations, broader trends in medical imaging modalities 
have highlighted their importance in disease diagnosis, including breast 
cancer. Recent studies emphasize the integration of hybrid imaging systems, 
big data analytics, and computational frameworks to enhance diagnostic 
accuracy across different cancers, reinforcing the multidisciplinary nature of 
detection technologies (Abhisheka et al., 2024).

Comprehensive systematic reviews of computer-aided diagnosis approaches 
reveal the breadth of computational methods being tested, from traditional 
feature-based models to more advanced deep learning architectures (Zebari 
et al., 2021). These reviews highlight the dynamic evolution of diagnostic 
strategies and provide insights into the strengths and limitations of various 
algorithmic approaches.

Finally, detection technologies cannot be divorced from their clinical context. 
As highlighted in theranostics-focused reviews, innovations in imaging 
are tightly coupled with advancements in treatment personalization and 
prognosis prediction (Bhushan et al., 2021). This co-evolution of diagnostics 
and therapeutics reflects a broader trend toward precision medicine, where 
accurate detection is central to tailoring interventions and improving patient 
outcomes (Umadevi et al., 2025; Tufail et al., 2021).

Methodology

Study Design

This study employed a systematic review methodology, following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 
guidelines to ensure transparent and replicable reporting. The primary 
objective was to synthesize existing empirical evidence on emerging imaging 
and computational technologies for breast cancer detection, focusing on their 
diagnostic accuracy, clinical applicability, and limitations. The review targeted 
peer-reviewed journal articles that evaluated novel imaging modalities, 
artificial intelligence (AI)-based algorithms, or hybrid diagnostic frameworks 
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Abstract

Background: Breast cancer remains the most prevalent cancer among women worldwide, and accurate 
detection is essential for improving outcomes. Recent advancements in imaging, artificial intelligence (AI), and 
molecular diagnostics have significantly enhanced diagnostic capabilities, yet their clinical translation remains 
uneven.

Objective: To systematically review recent evidence on breast cancer detection technologies, focusing on 
imaging modalities, AI applications, and emerging biomarkers.

Methods: A systematic review was conducted in accordance with PRISMA 2020 guidelines. Records were 
identified through database and manual searches (n = 427), with 395 remaining after deduplication. Following 
screening, 43 full-text articles were assessed, and 12 studies met inclusion criteria. Eligible studies included 
peer-reviewed research from 2016 to 2025 that evaluated imaging technologies, AI-based models, or molecular 
approaches for breast cancer detection.

Results: Evidence highlights the enhanced performance of tom synthesis, cone-beam CT, and automated 
ultrasound in complementing traditional mammography and handheld ultrasound. AI and deep learning 
models significantly improved lesion detection, classification, and risk assessment across modalities. Emerging 
approaches such as microwave imaging, Nano platform-based imaging, and extracellular vesicle biomarkers 
show promise for early detection. Despite these advances, challenges including dataset heterogeneity, cost, and 
limited clinical validation remain.

Conclusion: Advancements in imaging, AI, and molecular diagnostics are reshaping breast cancer detection. 
The future lies in multimodal, integrative approaches that combine anatomical, computational, and molecular 
data. Translation into clinical practice will require large-scale validation, standardization, and strategies to 
ensure accessibility across diverse healthcare settings.
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for breast cancer diagnosis and screening.

Eligibility Criteria

Studies were included based on the following predefined criteria:

•	 Population: Women aged ≥18 years undergoing breast cancer 
screening, diagnosis, or follow-up, regardless of risk status.

•	 Interventions/Exposures: Imaging and computational techniques 
for breast cancer detection, including mammography, ultrasound, MRI, 
microwave imaging, Nano platform-based methods, artificial intelligence, and 
deep learning models.

•	 Comparators: Conventional diagnostic techniques (e.g., 
mammography vs. ultrasound), human expert interpretation vs. machine 
learning algorithms, or variations between imaging modalities.

•	 Outcomes: Diagnostic performance indicators such as sensitivity, 
specificity, accuracy, area under the receiver operating characteristic curve 
(AUC), as well as clinical outcomes including early detection rates, tumour 
staging accuracy, and reduction in false positives/negatives.

•	 Study Designs: Randomized controlled trials (RCTs), cohort studies, 
cross-sectional analyses, case-control studies, and systematic reviews or meta-
analyses relevant to breast cancer detection technologies.

•	 Language: Only studies published in English were included.

•	 Publication Period: 2010–2025 to capture contemporary 
advancements in imaging and AI-based diagnostic tools.

Search Strategy

A structured search strategy was implemented across major academic 
databases, including PubMed, Scopus, Web of Science, Embase, and IEEE 
Xplore, complemented by Google Scholar for grey literature. Boolean operators 
were used to combine search terms such as:

•	 (“breast cancer” OR “breast neoplasm” OR “breast tumor”)

•	 AND (“detection” OR “diagnosis” OR “screening”)

•	 AND (“mammography” OR “ultrasound” OR “MRI” OR “microwave 
imaging” OR “Nano platform” OR “AI” OR “artificial intelligence” OR “deep 
learning” OR “machine learning”)

Manual searches of reference list from relevant reviews were also conducted 
to identify additional studies not captured by database queries.

Study Selection Process

All retrieved citations were imported into Zotero for organization and duplicate 
removal. The selection process followed two screening stages:

1.	 Title and abstract screening: Performed independently by two 
reviewers to exclude irrelevant studies.

2.	 Full-text screening: Remaining studies were reviewed in detail to 
confirm eligibility.

Discrepancies in inclusion were resolved through consensus or by consulting 
a third reviewer. A total of 427 records were identified (412 from databases, 
15 from other sources), reduced to 395 after duplicate removal. Following 
screening, 43 full-text articles were assessed, and 12 studies were included in 
the final synthesis. A visual summary of the process is provided in the PRISMA 
flow diagram (Figure 1).

Data Extraction

A standardized data extraction template was used to ensure consistency. Key 
information extracted from each study included:

•	 Author(s), year of publication, and country

•	 Study design and sample size

•	 Population demographics and clinical characteristics

•	 Imaging or computational method evaluated

•	 Comparator(s) used

•	 Diagnostic performance metrics (e.g., sensitivity, specificity, 
accuracy, AUC)

•	 Key findings and clinical implications

•	 Limitations reported by the authors

Data extraction was performed independently by two reviewers and verified 

for accuracy by a third reviewer.

Quality Assessment

The methodological quality and risk of bias of the included studies were 
appraised using tools appropriate to study design:

•	 Newcastle-Ottawa Scale (NOS) for observational studies.

•	 Cochrane Risk of Bias Tool (RoB 2.0) for randomized controlled 
trials.

•	 AMSTAR-2 for systematic reviews included in the synthesis.

Studies were rated as low, moderate, or high quality, depending on selection 
bias, comparability, outcome assessment, and reporting transparency.

Data Synthesis

Given the heterogeneity of study designs, diagnostic modalities, and outcome 
measures, a narrative synthesis approach was applied. Findings were grouped 
under major themes:

1.	 Traditional imaging methods (mammography, ultrasound, MRI).

2.	 Emerging modalities (microwave imaging, Nano platform-based 
imaging).

3.	 Artificial intelligence and deep learning approaches for breast 
cancer detection.

Where possible, key diagnostic performance statistics (e.g., sensitivity, 
specificity, accuracy) were reported. Due to variations in study design and 
outcome definitions, no meta-analysis was conducted.

Ethical Considerations

As this study is a secondary analysis of published peer-reviewed data, no 
ethical approval or informed consent was required. All included studies were 
assumed to have undergone appropriate institutional ethical review prior to 
publication.

Results

Summary and Interpretation of Included Studies on Emerging Trends in Breast 
Imaging and Cancer Detection

Figure 1. PRISMA Flow Diagram.
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1. Study Designs and Populations

The included studies span retrospective, prospective, cross-sectional, and 
randomized trial designs. Sample sizes ranged from small-scale surgical 
cohorts (Urano et al., 2016; n = 65) to large-scale population-based screening 
programs (Lauritzen et al., 2023; n = 119,650). Ages varied across studies, 
with most including middle-aged to older women, though Ahmed et al. (2023) 
included women as young as 30 years. Modalities assessed included digital 
mammography (DM), digital breast tomosynthesis (DBT), automated breast 
ultrasound (ABUS), handheld ultrasound (HHUS), breast cone-beam computed 
tomography (BCBCT), and multidetector CT (MDCT).

2. Comparative Diagnostic Performance

Several studies compared traditional mammography to newer imaging 
modalities. For example, Lång et al. (2016) demonstrated a significantly higher 
cancer detection rate with DBT compared to DM (8.9/1000 vs. 6.3/1000; p < 
0.0001), while Urano et al. (2016) found DBT superior for lesion delineation 
compared to DM (45% vs. 6.2%, p < 0.0001). Niu et al. (2019) reported that 
ABUS achieved higher sensitivity than HHUS (92.23% vs. 82.52%; p < 0.01) and 
a larger AUC (0.85 vs. 0.81; p < 0.05). Gouda et al. (2024) showed that adding 
ABUS to FFDM improved PPV (83.5% vs. 74.5%) and reduced recalls.

3. Clinical Applications in High-Risk and Complex Cases

Borowiec et al. (2025) highlighted that cross-sectional imaging (CT and PET-CT) 
altered staging in 36.8% and 51.2% of high-risk cases, respectively, significantly 
affecting radiation therapy planning. Felipe et al. (2020) showed that MDCT 
demonstrated substantial agreement with MRI (κ = 0.674–1.000) across staging 
features, supporting MDCT as a potential one-stop staging modality. Similarly, 
Formaz et al. (2023) found that breast CT provided higher diagnostic confidence 
than mammography in 90–98% of cases, though with artifact issues.

4. AI and Texture-Based Risk Stratification

Lauritzen et al. (2023) demonstrated the power of combining AI lesion 
detection with mammographic texture risk models. In 119,650 screened 
women, the combined model achieved an AUC of 0.73, outperforming either AI 
(0.70) or texture (0.66) alone. Notably, the top 10% highest-risk group identified 
accounted for 44.1% of interval cancers and 33.7% of long-term cancers.

5. Summary of Effect Estimates

Across modalities, DBT consistently improved cancer detection over DM, ABUS 
enhanced sensitivity and PPV compared to FFDM or HHUS, and cross-sectional 

imaging significantly influenced staging and treatment planning in high-risk 
patients. AI integration into screening showed promise in stratifying women at 
risk for both short- and long-term cancers (Table 1).

Discussion

Breast cancer remains one of the most challenging diseases to diagnose 
and manage due to its heterogeneity and the limitations of existing imaging 
techniques. Conventional modalities such as mammography and ultrasound 
continue to form the backbone of breast cancer detection, but advances in 
tomosynthesis, computed tomography (CT), and automated ultrasound 
have expanded diagnostic capabilities. For example, Ahmed et al. (2023) 
highlighted the complementary role of tomosynthesis and ultrasound in 
assessing asymmetric densities, while Urano et al. (2016) demonstrated that 
digital breast tomosynthesis offers superior intraoperative cancer detection 
compared with standard mammography. Similarly, Lång et al. (2016) provided 
evidence from large-scale screening trials that tomosynthesis could function as 
a stand-alone modality, emphasizing its diagnostic robustness.

Beyond mammography, CT-based methods have also shown potential. 
Felipe et al. (2020) demonstrated that dedicated CT protocols are feasible for 
locoregional staging, and Formaz et al. (2023) validated breast-dedicated CT in 
women with prior breast cancer, supporting its clinical utility. Cone-beam CT 
studies, such as that of He et al. (2016), further confirmed that this technology 
provides reliable lesion characterization when compared to ultrasound and 
digital mammography. Such findings emphasize the role of CT innovations in 
complementing and potentially streamlining breast cancer imaging workflows.

Ultrasound advancements have also significantly improved breast imaging, 
particularly in women with dense breast tissue. Gouda et al. (2024) confirmed 
that automated breast ultrasound added diagnostic value in dense breasts, 
aligning with Niu et al. (2019), who showed its diagnostic superiority 
over handheld ultrasound. Moreover, Raza et al. (2023) introduced Deep 
Breast Cancer Net, a deep learning-enhanced ultrasound model, further 
demonstrating how AI augments traditional modalities. Together, these 
studies affirm that automation and AI integration make ultrasound a powerful 
tool in early breast cancer detection.

Microwave imaging has emerged as another promising technology. AlSawaftah 
et al. (2022) reviewed its potential for early detection, noting advantages in 
safety and non-ionizing radiation, while Wang (2023) expanded on technical 
progress in microwave sensing techniques. Both studies emphasized that 
although clinical integration is limited, microwave imaging provides a low-cost, 

Study Country Design Sample Size Age (Mean/
Range)

Modality Compared Key Outcomes Effect Estimates

Lauritzen et 
al. (2023)

Denmark Retrospective 119,650 Median 59 (IQR 
53–64)

AI lesion detection + 
mammographic texture

AUC: AI 0.70, Texture 0.66, 
Combined 0.73

Top 10% risk group 
captured 44.1% 
interval cancers, 
33.7% long-term 
cancers

Ahmed et al. 
(2023)

Egypt Prospective 80 30–70 (mean 47.2 
± 9.2)

DBT vs. US DBT: Sens. 86.4%, Spec. 
93.1%; US: Sens. 100%, Spec. 
93.1%

Accuracy higher with 
US (95% vs. 91.3%)

Gouda et al. 
(2024)

Egypt Retrospective 500 Dense breasts 
(ACR C&D)

FFDM vs. FFDM+ABUS Adding ABUS improved PPV 
from 74.5% to 83.5%

Recall reduced, 
agreement κ = 0.51 
(p < 0.001)

Niu et al. 
(2019)

China Cross-sectional 398 (599 
masses)

Not specified ABUS vs. HHUS Sensitivity: ABUS 92.23% vs. 
HHUS 82.52% (p < .01)

AUC: ABUS 0.85 vs. 
HHUS 0.81 (p < .05)

Borowiec et 
al. (2025)

Poland Prospective 132 Not specified CT/PET-CT vs. MMG/US Staging changed in 36.8% 
(CT) and 51.2% (PET-CT)

χ²(1)=18.98, p<0.001 
(CT); χ²(1)=6.41, 
p=0.03 (PET-CT)

Lång et al. 
(2016)

Sweden Prospective 
population-based

7,500 (of 
15,000 
planned)

40–74 DBT vs. DM Detection rate: 8.9/1000 
(DBT) vs. 6.3/1000 (DM), 
p<0.0001

Recall: 3.8% vs. 2.6% 
(p<0.0001), PPV: both 
24%

Urano et al. 
(2016)

Japan Prospective 65 specimens Median 62 (34–86) DBT vs. DM (surgical 
specimens)

DBT detected more invasive 
lesions in LL views (71% vs. 
13%, p<0.0001)

DBT delineated 
lesions better (45% 
vs. 6.2%, p<0.0001)

He et al. 
(2016)

China Prospective 212 Not specified BCBCT, CE-BCBCT, US, 
MG

CE-BCBCT sensitivity 98.7% 
vs. BCBCT 78.4%

AUC: CE-BCBCT 
0.869, BCBCT 0.846, 
US 0.834, MG 0.782

Felipe et al. 
(2020)

Brazil Prospective 33 Mean 47 MDCT vs. MRI Agreement substantial–
perfect (κ = 0.613–1.000)

Tumor extension κ = 
0.674; multicentricity 
κ = 0.857

Formaz et al. 
(2023)

Switzerland Retrospective 32 (PHBC) Not specified B-CT vs. Mammography Higher diagnostic confidence 
in 90–98% of cases

Artifacts in 29.4% 
due to clips

Table 1. General Characteristics of Included Studies.
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safe alternative that could complement or even replace traditional modalities 
in certain contexts.

Artificial intelligence (AI) and deep learning (DL) have revolutionized breast 
imaging by enabling higher diagnostic accuracy and efficiency. Abhisheka et 
al. (2023) provided a comprehensive review on deep learning applications in 
detection, segmentation, and classification, while Nasser and Yusof (2023) 
highlighted systematic advancements in AI-based diagnosis. Complementary 
studies, including Shah et al. (2021) and Meenalochini and Ramkumar 
(2021), showcased AI’s capability to outperform conventional algorithms in 
mammogram analysis. These findings collectively confirm AI’s transformative 
role in breast cancer imaging.

Moreover, deep learning has proven particularly effective when integrated 
with existing imaging modalities. Balkenende et al. (2022) emphasized its 
clinical translation in nuclear medicine, and Ben Ammar et al. (2024) reviewed 
datasets and methodological challenges for early detection. Luo et al. 
(2024) synthesized a decade of AI advancements, demonstrating significant 
improvements in interpretability and generalizability. Similarly, Tufail et al. 
(2021) and Wang et al. (2022) discussed hybrid deep learning approaches for 
cancer detection, stressing the importance of combining traditional imaging 
with computational intelligence.

Risk assessment using AI-based image analysis is another emerging frontier. 
Lauritzen et al. (2023) demonstrated how mammographic texture combined 
with lesion detection algorithms improves personalized risk stratification. 
Zebari et al. (2021) supported this by systematically reviewing computing 
approaches for CAD systems, which significantly reduce diagnostic variability. 
Together, these works illustrate how AI-driven risk models may shift breast 
cancer care from detection alone toward comprehensive prediction and 
prevention strategies.

While imaging and AI form the core of current advancements, molecular 
biomarkers and nanotechnology-based imaging are expanding diagnostic 
frontiers. Lee et al. (2023) reported the diagnostic value of extracellular vesicle 
biomarkers, suggesting a role for liquid biopsy in complementing imaging 
findings. Umadevi et al. (2025) further highlighted how Nano platforms 
enhance cancer imaging, enabling multimodal and targeted approaches. 
These innovations suggest that future breast cancer detection will combine 
anatomical, functional, and molecular insights for greater precision.

Clinical guidelines and screening strategies remain central to implementation. 
Monticciolo et al. (2021) emphasized inclusive breast cancer screening 
recommendations, advocating for risk-adapted strategies that integrate 
imaging innovations. Bhushan et al. (2021) similarly underscored the 
importance of aligning detection with treatment and theranostics, bridging 
diagnostic advances with therapeutic outcomes. These perspectives ensure 
that technological progress translates into meaningful clinical benefit.

Despite these advances, significant challenges remain. Abdul Halim et al. (2021) 
and Rezaei (2021) both underscored barriers to clinical adoption, such as cost, 
limited datasets, and variability in imaging protocols. Abhisheka et al. (2024) 
echoed these concerns, highlighting the need for multimodal integration and 
standardization. The gap between laboratory innovation and routine clinical 
deployment remains a key barrier.

In clinical practice, imaging advancements must also address complex 
scenarios, such as locally advanced or surgically inaccessible breast cancer. 
Borowiec et al. (2025) demonstrated how cross-sectional imaging supports 
customized radiation therapy in such patients, underscoring the vital role of 
advanced imaging in guiding treatment decisions. This aligns with Raza et al. 
(2023), who emphasized the treatment-planning benefits of AI-augmented 
ultrasound imaging.

Importantly, multiple studies reveal the synergistic role of combining modalities 
rather than relying on a single tool. Ahmed et al. (2023), Gouda et al. (2024), 
and Felipe et al. (2020) all demonstrated improved diagnostic accuracy when 
two or more modalities were combined. Such findings advocate for hybrid 
diagnostic models that integrate imaging, AI, and molecular data into a unified 
diagnostic pathway.

Looking ahead, the convergence of imaging modalities, computational 
intelligence, and molecular diagnostics will define the future of breast cancer 
detection. The literature strongly supports a transition toward multimodal, 
personalized strategies (Luo et al., 2024; Umadevi et al., 2025). However, 
widespread clinical translation requires large-scale validation, robust 
regulatory frameworks, and equitable access, particularly in low-resource 
settings (Abdul Halim et al., 2021; AlSawaftah et al., 2022).

In summary, the reviewed evidence indicates that no single technology will 
solve the challenges of breast cancer detection. Instead, the integration of 
advanced imaging, AI, molecular biomarkers, and clinical guidelines offers 
the most promising pathway forward. Continued collaboration between 

radiologists, computer scientists, and oncologists will be essential in achieving 
precision detection that ultimately improves patient outcomes worldwide.

Conclusion

This systematic review synthesized evidence from 2016–2025 to evaluate 
advancements in breast cancer detection technologies, including imaging 
modalities, artificial intelligence (AI), and molecular biomarkers. The findings 
demonstrate that while conventional methods such as mammography, 
ultrasound, and computed tomography remain foundational, significant 
improvements have been achieved through tomosynthesis, automated 
ultrasound, and dedicated CT approaches. The integration of AI and deep 
learning across these modalities has enhanced diagnostic accuracy, risk 
stratification, and workflow efficiency. Additionally, emerging frontiers such 
as microwave imaging, extracellular vesicle biomarkers, and Nano platform-
based imaging offer promising directions for early detection and personalized 
diagnostics.

Despite these advances, challenges persist in translating innovations into 
clinical practice. Cost, limited datasets, heterogeneous protocols, and 
variability in access remain barriers to widespread adoption. Evidence suggests 
that a multimodal, integrative approach—combining imaging, computational 
intelligence, and molecular diagnostics—will be necessary to achieve precision 
breast cancer detection. Collaborative efforts between clinicians, researchers, 
and technology developers are critical to ensure that these advancements 
result in improved patient outcomes and equitable access to care.

Limitations

This review has several limitations. First, the included studies exhibited 
considerable heterogeneity in populations, imaging modalities, and outcome 
measures, which precluded meta-analysis. Second, most AI-based studies 
were retrospective and relied on limited or non-standardized datasets, 
raising concerns about generalizability. Third, cost-effectiveness analyses 
and patient-centered outcomes were rarely reported, limiting insights into 
real-world feasibility. Additionally, the review was restricted to English-
language publications, potentially excluding relevant studies from non-English 
databases. Finally, while this review highlights emerging technologies such 
as microwave imaging and Nano platforms, many remain in early stages of 
validation, and their clinical utility is yet to be established.

References

1.	 Abdul Halim, A. A., Andrew, A. M., & Mohd Yasin, M. N. (2021). Existing 
and emerging breast cancer detection technologies and its challenges: A 
review. Applied Sciences, 11(24): 11894.

2.	 Abhisheka, B., Biswas, S. K., & others. (2023). A comprehensive review 
on breast cancer detection, classification and segmentation using deep 
learning. Archives of Computational Methods in Engineering, 30(4): 1593–
1623.

3.	 Abhisheka, B., Biswas, S. K., Purkayastha, B., & Das, D. (2024). Recent trend 
in medical imaging modalities and their applications in disease diagnosis: 
A review. Multimedia Tools and Applications, 83(1): 145–167.

4.	 Ahmed, R. O. A. G., Darwish, M. A. E. H., Chalabi, N. A. E., & Tantawy, S. 
H. (2023). Role of tomosynthesis and ultrasound in the assessment of 
asymmetric breast densities: A comparative prospective study. Egyptian 
Journal of Radiology and Nuclear Medicine, 54(1): 112.

5.	 AlSawaftah, N., El-Abed, S., Dhou, S., & Zakaria, A. (2022). Microwave 
imaging for early breast cancer detection: Current state, challenges, and 
future directions. Journal of Imaging, 8(12): 329.

6.	 Balkenende, L., Teuwen, J., & Mann, R. M. (2022). Application of deep 
learning in breast cancer imaging. Seminars in Nuclear Medicine, 52(5): 
405–415.

7.	 Ben Ammar, M., Ayachi, F. L., & others. (2024). Harnessing deep learning for 
early breast cancer diagnosis: A review of datasets, methods, challenges, 
and future directions. International Journal of Computing and Digital 
Systems, 13(2): 1–22.

8.	 Bhushan, A., Gonsalves, A., & Menon, J. U. (2021). Current state of breast 
cancer diagnosis, treatment, and theranostics. Pharmaceutics, 13(5): 723.

9.	 Borowiec, T., Matkowski, R., Cybulska-Stopa, B., Kuniej, T., Kołodziejczyk, 
A., Dupla, D., & Maciejczyk, A. (2025). Baseline cross-sectional imaging 
of locally advanced high-risk breast cancer facilitates highly customized 
radiation therapy in surgically inaccessible anatomical areas. Frontiers in 
Oncology, 15: 1556122.

10.	 Felipe, V. C., Graziano, L., Barbosa, P. N., Calsavara, V. F., & Bitencourt, A. 
G. (2020). Multidetector computed tomography with dedicated protocol 



EMERGING TRENDS IN BREAST IMAGING AND CANCER DETECTION: SYSTEMATIC REVIEW

Revista Iberoamericana de Psicología del Ejercicio y el Deporte. Vol. 20, nº 6 (2025) 655

for breast cancer locoregional staging: Feasibility study. Diagnostics, 10(7): 
479.

11.	 Formaz, E., Schmidt, C., Berger, N., Schönenberger, A. L., Wieler, J., 
Frauenfelder, T., & Marcon, M. (2023). Dedicated breast computed-
tomography in women with a personal history of breast cancer: A proof-
of-concept study. European Journal of Radiology, 158: 110632.

12.	 Gouda, W., Yasin, R., Yasin, M. I., & Omar, S. (2024). Automated breast 
ultrasound in breast cancer screening of mammographically dense 
breasts: Added values. Egyptian Journal of Radiology and Nuclear 
Medicine, 55(1): 86.

13.	 He, N., Wu, Y. P., Kong, Y., Lv, N., Huang, Z. M., Li, S., & Wei, W. D. (2016). The 
utility of breast cone-beam computed tomography, ultrasound, and digital 
mammography for detecting malignant breast tumors: A prospective 
study with 212 patients. European Journal of Radiology, 85(2): 392–403.

14.	 Lauritzen, A. D., von Euler-Chelpin, M. C., Lynge, E., Vejborg, I., Nielsen, 
M., Karssemeijer, N., & Lillholm, M. (2023). Assessing breast cancer risk by 
combining AI for lesion detection and mammographic texture. Radiology, 
308(2): e230227.

15.	 Lång, K., Andersson, I., Rosso, A., Tingberg, A., Timberg, P., & Zackrisson, 
S. (2016). Performance of one-view breast tomosynthesis as a stand-
alone breast cancer screening modality: Results from the Malmö Breast 
Tomosynthesis Screening Trial. European Radiology, 26(1): 184–190.

16.	 Lee, Y., Ni, J., Beretov, J., Wasinger, V. C., Graham, P., & Li, Y. (2023). Recent 
advances of small extracellular vesicle biomarkers in breast cancer 
diagnosis and prognosis. Molecular Cancer, 22: 35.

17.	 Luo, L., Wang, X., Lin, Y., Ma, X., & Tan, A. (2024). Deep learning in breast 
cancer imaging: A decade of progress and future directions. IEEE Reviews 
in Biomedical Engineering, 17: 180–199.

18.	 Meenalochini, G., & Ramkumar, S. (2021). Survey of machine learning 
algorithms for breast cancer detection using mammogram images. 
Materials Today: Proceedings, 45: 4371–4376.

19.	 Monticciolo, D. L., Malak, S. F., Friedewald, S. M., & others. (2021). Breast 
cancer screening recommendations inclusive of all women at average 
risk: Update from the ACR and Society of Breast Imaging. Journal of the 
American College of Radiology, 18(9): 1234–1246.

20.	 Nasser, M., & Yusof, U. K. (2023). Deep learning based methods for breast 

cancer diagnosis: A systematic review and future direction. Diagnostics, 
13(6): 1147.

21.	 Niu, L., Bao, L., Zhu, L., Tan, Y., Xu, X., Shan, Y., & Shen, Y. (2019). Diagnostic 
performance of automated breast ultrasound in differentiating benign 
and malignant breast masses in asymptomatic women: A comparison 
study with handheld ultrasound. Journal of Ultrasound in Medicine, 38(11): 
2871–2880.

22.	 Raza, A., Ullah, N., Khan, J. A., Assam, M., & Guzzo, A. (2023). 
DeepBreastCancerNet: A novel deep learning model for breast cancer 
detection using ultrasound images. Applied Sciences, 13(2): 824.

23.	 Rezaei, Z. (2021). A review on image-based approaches for breast 
cancer detection, segmentation, and classification. Expert Systems with 
Applications, 167: 114255.

24.	 Shah, S. M., Khan, R. A., Arif, S., & Sajid, U. (2021). Artificial intelligence 
for breast cancer detection: Trends & directions. arXiv preprint 
arXiv:2110.00942.

25.	 Tufail, A. B., Ma, Y. K., Kaabar, M. K. A., & others. (2021). Deep learning in 
cancer diagnosis and prognosis prediction: A minireview on challenges, 
recent trends, and future directions. Mathematical Methods in the Applied 
Sciences, 44(21): 16312–16327.

26.	 Umadevi, K., Sundeep, D., Vighnesh, A. R., & Misra, A. (2025). Current trends 
and advances in nanoplatforms-based imaging for cancer diagnosis. 
Indian Journal of Clinical Biochemistry, 40(1): 32–44.

27.	 Urano, M., Shiraki, N., Kawai, T., Goto, T., Endo, Y., Yoshimoto, N., & 
Shibamoto, Y. (2016). Digital mammography versus digital breast 
tomosynthesis for detection of breast cancer in intraoperative specimens 
during breast-conserving surgery. Breast Cancer, 23(5): 706–711.

28.	 Wang, L. (2023). Microwave imaging and sensing techniques for breast 
cancer detection. Micromachines, 14(6): 1183.

29.	 Wang, X., Ahmad, I., Javeed, D., Zaidi, S. A., & Alotaibi, F. M. (2022). Intelligent 
hybrid deep learning model for breast cancer detection. Electronics, 11(1): 
83.

30.	 Zebari, D. A., Ibrahim, D. A., Zeebaree, D. Q., & others. (2021). Systematic 
review of computing approaches for breast cancer detection based 
computer aided diagnosis using mammogram images. Applied Artificial 
Intelligence, 35(14): 1089–1111.


